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In many situations, species distribution models need to make use of multiple data sources to address their objectives. We developed a spatio- 
temporal modelling frame w ork that integrates research surv e y dat a and dat a collected b y observ ers onboard fishing v essels while accounting f or 
ph y sical barriers (islands, con v oluted coastlines). We demonstrated our frame w ork f or tw o b y catch species in New Zealand deepwater fisheries: 
spiny dogfish (Squalus acanthias) and javelinfish (Lepidorhynchus denticulatus). Results indicated that employing observer-only data or integrated 
data is necessary to map fish biomass at the scale of the New Zealand e x clusiv e economic zone, and to interpolate local biomass indices (e.g., 
for the east coast of the South Island) in years with no surv e y but a v ailable observ er data. R esults also sho w ed that, if enough surv e y data are 
a v ailable, fisheries analy sts should: (1) de v elop both an integrated model and a model relying on surv e y -only data; and (2) for a given geographic 
area, ultimately choose the index produced with integrated data or the index produced with surv e y -only data based on the reliability of the 
interannual variability of the index. We also conducted a simulation experiment, which indicated that the predictions of our spatio-temporal 
models are virtually insensitive to the consideration of physical barriers. 
Keywords: data integration, New Zealand, observer data, research survey data, spatio-temporal models, VAST modelling platform. 
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Introduction 

Species distribution models (SDMs) have become key tools in 

terrestrial and marine research, including in fisheries science.
These statistical models rely on presence-only, encounter/non- 
encounter, count, or biomass-sampling data, and they relate 
encounter probability, abundance, or biomass to environmen- 
tal variables and/or latent (unmeasured) spatial variation. One 
major use of SDMs consists of generating spatial predictions 
for broad geographic areas, including for the locations and 

years for which data are not available (Elith and Leathwick,
2009 ). The maps produced from SDMs constitute valuable in- 
puts for the identification of essential fish habitats (geographic 
areas that are essential to fish life history) and marine spatial 
planning (Pennino et al., 2016 ), as well as for investigations of 
the potential impacts of climate change (Guisan and Thuiller,
2005 ). Moreover, an area-weighted sum of the annual abun- 
dance densities (or biomass densities) predicted by SDMs can 

be performed to construct indices of relative abundance (or 
relative biomass) for fisheries stock assessments (Grüss and 

Thorson, 2019 ; Rufener et al., 2021 ). 
Fisheries scientists usually fit SDMs to data collected by 

research surveys (fisheries-independent monitoring data) or 
monitoring programmes that depend on fishing activities 
(fisheries-dependent monitoring data). The use of more oppor- 
tunistic presence-only data, such as the data collected by citi- 
zen scientists, in SDMs is not common in fisheries science com- 
pared to terrestrial research. Surveys and fisheries-dependent 
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onitoring programmes differ in their spatio-temporal extent,
esign, and protocols and, therefore, in terms of data quantity,
ata quality, costs, and potential sampling biases. Ultimately,
ach of these two data sources has its advantages and disad-
antages. Using survey data in SDMs is, a priori , a prefer-
ble option, as survey data should arise from a well-defined
ampling protocol that is either fixed or under experimen- 
al control following a probability sampling design (Cochran,
977 ). Statistically designed surveys allow differences across 
pace and time to be attributed to variation in the target vari-
ble rather than sampling methods or inclusion probabilities 
Fletcher et al., 2019 ; Miller et al., 2019 ). However, surveys
re costly, tend to be restricted geographically, are not con-
ucted every year in many world’s regions, and are typically
onfined to specific months of the year (Bourdaud et al., 2017 ;
ebster et al., 2020 ; Rufener et al., 2021 ). In many instances,

ndividual surveys do not cover an important fraction of the
istribution areas of fish stocks of interest, or of the environ-
ental conditions driving the spatial distribution patterns of 

hese fish stocks. In these situations, SDMs fitted to data com-
ng from individual surveys result in incomplete insights into 

he spatial distribution patterns or spatial density patterns of 
he fish stocks of interest (Webster et al., 2020 ; Thompson et
l., 2022 ), or in indices of relative abundance/biomass (hence-
orth simply “indices”) that show conflicting patterns with the 
ndices produced from other research surveys (Peterson et al.,
017 ). 
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Observer programmes, i.e. fisheries-dependent programmes
onsisting of placing observers onboard fishing vessels, have
ome advantages over surveys. Specifically, observer pro-
rammes are more cost-effective in many world’s regions, gen-
rally generate more observations than surveys, usually pro-
ide a long time series, tend to be carried out year-round,
nd often cover broad geographic areas (Bourdaud et al.,
017 ; Grüss et al., 2018 ; Rufener et al., 2021 ). Thus, observer
rogrammes can provide valuable information to understand
ow fish stocks of interest distribute over space and how en-
ironmental conditions drive the spatial distribution patterns
f these fish stocks (Pennino et al., 2016 ). On the other hand,
ampling in observer programmes is reliant on fishing vessels,
hich target specific species and locations (i.e. non-random in-

lusion probabilities) and constantly adapt their fishing meth-
ds based on management and other constraints and tech-
ological developments (i.e. sampling attributes that are not
xed or under experimental control). Therefore, observer data
onstitute biased samples of fish stocks or “unstructured data”
ensu Isaac et al. (2020) (as opposed to “structured” survey
ata), although usually much more so when the fish stocks
f interest are targeted by fishing vessels rather than bycatch
pecies (Pennino et al., 2016 ). To correct for biases in observer
ata, fisheries scientists traditionally standardize the catch rate
ata reported by observers by including covariates in SDMs
hat filter out the variability in the data that is due to fac-
ors influencing catchability, referred to as “catchability co-
ariates” (Maunder and Punt, 2004 ). However, catchability
ifferences among fishing vessels result from myriad complex
nd often not well-understood interacting causes (Hilborn
nd Walters, 1992 ; Quinn and Deriso, 1999 ), making it hard
o include all necessary catchability covariates in a model fit-
ed to observer data. For this reason, many SDMs fitted to
bserver data have included a random vessel effect that rep-
esents multiple latent catchability variables that are not ex-
licitly modelled (Thorson and Ward, 2014 ), often in lieu of
ny explicit catchability covariates (Xu et al., 2019 ; Rufener
t al., 2021 ). The random vessel effect has been found to be a
ritical model component for explaining variation in observer
ata (Rufener et al., 2021 ). 
Given that individual surveys (fisheries-independent moni-

oring programmes) and fisheries-dependent monitoring pro-
rammes have their own strengths and weaknesses, there has
een increased research into combining data collected by dif-
erent monitoring programmes. Many recent studies have fit-
ed SDMs to data collected by different surveys (e.g. Grüss
nd Thorson, 2019 ; Pirtle et al., 2019 ; Maureaud et al., 2021 ;
hompson et al., 2022 ) or to a combination of survey and
bserver data (e.g. Grüss et al., 2017 , 2018 ; Ono et al., 2018 ;
ufener et al., 2021 ). The simplest way of combining datasets

s “data pooling”, where the observations coming from dif-
erent datasets are employed in the same SDMs in the form
f presence-only data without acknowledging data sources
Fletcher et al., 2019 ; Isaac et al., 2020 ). For example, Pirtle et
l. (2019) used data from multiple surveys and other sources
a fish atlas and a tagging study) in the form of presence-only
ata in MaxEnt, to understand habitat suitability for ground-
sh in the Gulf of Alaska. By ignoring differences between
ata sources, data pooling offers a rapid way to get ecological
nsights with SDMs but also provides biased inference about
arget densities when inclusion probabilities vary across space
nd time (Warton and Shepherd, 2010 ). There exist several
ays of combining datasets other than data pooling that are
ore insightful, including, inter alia , performing formal data
ntegration that accounts for the observation process associ-
ted with each data source, a method referred to as “inte-
rated modelling”. [Note that the term “integrated modelling”
n fisheries science is utilized beyond the field of SDMs, e.g. in
he field of stock assessments (Maunder and Punt, 2013 )]. 

Integrated SDMs have become popular in terrestrial re-
earch (Miller et al., 2019 ; Zipkin et al., 2019 ; Isaac et al.,
020 ) and are increasingly being used in fisheries science
e.g. Dolder et al., 2018 ; Grüss et al., 2018 ; Rufener et al.,
021 ; Thompson et al., 2022 ). Their objective is to retain
he strengths of several data sources (e.g. the high quality of
tructured survey data and the large spatio-temporal coverage
f unstructured observer data) while correcting as much as
ossible for the weaknesses of the different data sources (e.g.
he biases associated with unstructured observer data). Inte-
rated SDMs consider (1) a latent (true but unknown) vari-
ble (also called “state variable”; e.g. the fish biomass den-
ity); and (2) an observation process that results, for each data
ource, in conditionally independent observations given the la-
ent variable (e.g. biomass catch rates for both a survey and
n observer program). The latent variable is related to envi-
onmental variables and/or latent spatial variation (as in any
DM), while the observation process accounts for differences
n sampling that result in different catchabilities between data
ources (Isaac et al., 2020 ). Integrated SDMs can be imple-
ented only if the individuals sampled to produce the differ-

nt structured and unstructured datasets can be assumed to
elong to the same population and if the likelihoods for the
ifferent structured and unstructured datasets have parame-
ers in common (Maunder, 2004 ; Miller et al., 2019 ). With
ifferent data sources sharing common parameters and, there-
ore, common likelihood components, a joint likelihood can
e computed as the product of the likelihood components for
ach data source, enabling model estimation from a sharing of
nformation across the different data sources (Fletcher et al.,
019 ). 
In fisheries science, many integrated SDM studies have com-

ined data sources in the form of encounters/non-encounters
e.g. Grüss et al., 2017 , 2018 ; Pinto et al., 2019 ; Thompson et
l., 2022 ), which is particularly useful when the incorporated
ata from different sources were collected using very differ-
nt gears (e.g. longlines and bottom trawls in Thompson et
l. 2022) . In the integrated SDMs employing encounter/non-
ncounter data, differences in design and methods that result
n different catchabilities are accounted for via a catchabil-
ty factor with one level for each data source (but see Pinto
t al., 2019 , where differences in catchability between data
ources were ignored). Although the integrated SDMs using
olely encounters/non-encounter data can produce useful spa-
ial predictions of encounter probability for broad geographic
reas, they cannot provide any insights into the abundance or
iomass patterns of fish stocks, particularly the indices that
re needed for most stock assessments. However, other inte-
rated SDM studies have combined data sources in the form
f count data (Rufener et al., 2021 ) or biomass-sampling data
Dolder et al., 2018 ; Ono et al., 2018 ; Perretti and Thor-
on, 2019 ; Maureaud et al., 2021 ). In all cases, the different
ata sources were acquired with the same gear (e.g. bottom
rawl in the case of Perretti and Thorson, 2019) , and the inte-
rated SDMs included a catchability factor with one level for
ach data source. Grüss and Thorson (2019) provides a differ-
nt case study, where the data coming from different sources
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were not only encounters/non-encounters yet were collected 

using different gears. Specifically, the integrated SDM in Grüss 
and Thorson (2019) relied on biomass-sampling data from a 
groundfish trawl survey, count data from a pelagic trawl sur- 
vey, and encounters/non-encounters from a bottom longline 
survey, under the assumption that all data arise from a marked 

and thinned Poisson point process. 
Numerous studies have demonstrated the benefits associ- 

ated with integrated SDMs compared to SDMs that employ 
only one data source. First, integrated SDMs have frequently 
been found to allow for model estimation when SDMs re- 
lying on one single data source failed (Fletcher et al., 2019 ; 
Isaac et al., 2020 ). Second, by exploiting a larger number of 
observations, integrated SDMs usually improve the precision 

of estimations, particularly when a limited number of records 
are provided by the most reliable data source (e.g. Fletcher 
et al., 2019 ; Grüss and Thorson, 2019 ; Rufener et al., 2021 ; 
Thompson et al., 2022 ). Thus, many studies have reported 

that integrated SDMs allowed for a better characterization of 
how the environment shapes spatial distributions (Fletcher et 
al. , 2019 ; Pinto et al. , 2019 ), a valuable understanding of fish 

spatial distribution patterns in geographic areas where some 
data sources provide very little or no observations (Grüss 
and Thorson, 2019 ; Rufener et al., 2021 ; Thompson et al.,
2022 ), and the generation of indices for a longer time period 

that are also less uncertain (O’Leary et al., 2020 ; Rufener et 
al., 2021 ). Third, simulation experiments and cross-validation 

procedures revealed that integrated SDMs also improved the 
accuracy of estimations (Fithian et al., 2015 ; Fletcher et al.,
2019 ; Grüss and Thorson, 2019 ; Thompson et al., 2022 ).
All this being said, integrated SDMs should not be seen as 
a panacea, and it is desirable, for particular applications, to 

evaluate their advantages and disadvantages relative to SDMs 
fitted to single data sources (Isaac et al., 2020 ; Simmonds et 
al., 2020 ). 

Many of the above-mentioned SDMs are spatio-temporal 
models, i.e. models that account for spatial variation (long- 
term latent variation) and, possibly, spatio-temporal variation 

(latent variation that changes over time) at a very fine scale 
(at the scale of kilometres or tens of kilometres; e.g. Grüss et 
al., 2018 ; Ono et al., 2018 ; Rufener et al., 2021 ; Thompson 

et al., 2022 ). Modelling latent spatial/spatio-temporal varia- 
tion in integrated SDMs is essential to borrow information 

across datasets when the different data sources involve differ- 
ent spatial scales, which is a frequent situation (Isaac et al.,
2020 ). Compared to models that ignore latent spatial/spatio- 
temporal variation, spatio-temporal models produce more 
precise estimations through their ability to predict quantities 
of interest (e.g. biomass density) at unobserved sites and times 
by sharing information across adjacent locations and time pe- 
riods (Thorson et al., 2015a ; Rufener et al., 2021 ; Thompson 

et al., 2022 ). Recent simulation experiments also found that,
compared to simpler models, spatio-temporal models gener- 
ally result in more accurate estimations and/or a better char- 
acterization of uncertainty around these estimations (Grüss et 
al., 2019 ; Brodie et al., 2020 ; Hsu et al., 2022 ). 

Here, we present a spatio-temporal modelling framework 

integrating survey and observer data while accounting for 
physical barriers (islands, convoluted coastlines) in the esti- 
mation of spatial and spatio-temporal variation. By borrow- 
ing information across data sources, sites, and years, this in- 
tegrated SDM framework intends to improve the precision 

and accuracy of estimations over SDMs that rely on a sin- 
le data source. Our spatio-temporal modelling framework 

an integrate the biomass catch rate data collected by mul-
iple monitoring programmes (surveys and/or observer pro- 
rammes) using the same gear method (e.g. a bottom trawl)
ia the estimation of a fishing-power ratio for each monitoring
rogram relative to a reference survey. When some observa- 
ions come from an observer program, our spatio-temporal 
odelling framework also includes a random vessel effect to 

ccount for catchability differences among the fishing vessels 
nboard which the observers were placed. In the following,
e describe the modelling framework and demonstrate it for 

wo bycatch species in New Zealand (NZ) deepwater fish- 
ries, spiny dogfish ( Squalus acanthias ) and javelinfish ( Lepi-
orhynchus denticulatus ), using data coming from 12 differ- 
nt bottom trawl surveys and a large observer program that
laces observers onboard commercial bottom trawlers in NZ 

aters. Then, we employ a simulation experiment to evaluate 
he accuracy, error, and confidence interval coverage of the 
ndices predicted by our integrated SDMs vs. an SDM using
urvey-only data, when physical barriers are accounted for or 
ot. 

aterials and methods 

s the data collected by monitoring programmes typically 
nclude many zeros, our spatio-temporal model is a two- 
tage (a.k.a. delta) model fitted to biomass catch rate data,
(i ) , where i indexes samples. A delta model defines an en-
ounter probability, p(i ) , and an expected biomass catch rate
iven that the species of interest is encountered (positive catch
ate), r (i ) (Lo et al., 1992 ). The product of these two quanti-
ies gives biomass density, d(i ) . More specifically, our spatio-
emporal model is the Poisson-link delta model developed in 

horson (2018) , which relates encounter probability and pos- 
tive catch rate rather than assuming that these two quantities
re independent. The Poisson-link delta model estimates two 

tate variables, number density, n (i ) , and biomass-per-number,
 (i ) , and the product of these two quantities is also equal to
iomass density d(i ) . Under the assumption that groups of fish
re randomly distributed in the proximity of sampling, en- 
ounter probability p(i ) can be derived as a complementary
og–log link from number density n (i ) . It follows that, in the
oisson-link delta model, positive catch rate r (i ) is obtained as
 ( i ) w ( i ) / p(i ) (Equation 5 of Thorson, 2018 ). Given the above,
ur model computes the probability of the biomass catch rate
ata b(i ) as (Thorson, 2018 ) 

f 
(
b ( i ) = B 

) = 

{
1 − p ( i ) if B = 0 

p ( i ) × Gamma 
(
B | r ( i ) ; σ 2 

r 

)
if B > 0 

, (1) 

here f ( b( i ) = B ) is the data likelihood; Gamma ( B | r ( i ) ; σ 2 
r )

s the Gamma probability density function for an unexplained 

ariation in positive catch rate r (i ) ; and σ 2 
r is the residual catch

ate variation. 
Our model estimates the two state variables n ( s, t ) and
 ( s, t ) at each site s and in each year t via two linear predic-

ors. When our model is fitted to data coming from a single
urvey, each linear predictor expresses the logarithm of the 
tate variable as a function of year intercepts β, spatial varia-
ion (long-term latent variation) ω, spatio-temporal variation 

latent variation that changes over time) ε, density covariates 
, and catchability covariates Q , which are all estimated by

he model: 
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log ( n ( s i , t i ) ) = βn ( t i ) + ω n ( s i ) + ε n ( s i , t i ) 

+ 

n p1 ∑ 

p1 = 1 

γn ( t i , p1 ) X n ( i, t i , p1 ) 

+ 

n k 1 ∑ 

k 1 = 1 

λn 
(
k 1 

)
Q n 

(
i, k 1 

)
, 

log ( w ( s i , t i ) ) = βw 

( t i ) + ω w 

( s i ) + ε w 

( s i , t i ) 

+ 

n p2 ∑ 

p2 = 1 

γw 

( t i , p2 ) X w 

( i, t i , p2 ) 

+ 

n k 2 ∑ 

k 2 = 1 

λw 

(
k 2 

)
Q w 

(
i, k 2 

)
, (2) 

here p 1 indexes density covariates in the first linear predic-
or; n p1 is the number of density covariates in the first linear
redictor; γn ( t i , p1 ) is the average effect of density covariate
 1 in the first linear predictor; k 1 indexes catchability covari-
tes in the first linear predictor; n k 1 is the number of catch-
bility covariates in the first linear predictor; λn ( k 1 ) is the
mpact of catchability covariate k 1 for the first linear predic-
or; and p 2, n p2 , γw 

( t i , p2 ) , k 2, n k 2 , and λw 

( k 2 ) have similar
eanings for the second linear predictor. The X n covariates

nd the X w 

covariates affect, respectively, number density and
iomass-per-number and, therefore, both affect biomass den-
ity; they are collectively referred to as “density covariates”for
implicity and are distinguished from the Q n and Q w 

covari-
tes, which affect catchability in the first and linear predictors,
espectively (Thorson et al., 2023 ). 

The density covariates X n and X w 

(Equation 2 ) approxi-
ate drivers of the latent variable. Coefficients γn and γw 

rep-
esenting their estimated responses are treated as fixed effects,
s is the case for the year intercepts βn and βw 

. By contrast
ith density covariates, the catchability covariates Q n and Q w 

re nuisance parameters, which are included in the model to
lter out causes of variation in the data due to the character-
stics of sampling (Grüss et al., 2019 ; Hsu et al., 2022 ). The
ariation in the state variables that is not explained by density
ovariates gets explained by the spatial variation term ω and
he spatio-temporal variation term ε (Thorson et al., 2015a ;
hompson et al., 2022 ). Both the spatial and spatio-temporal
ariation terms are treated as random effects that follow a
ultivariate normal distribution, and spatio-temporal vari-

tion can also be modelled as a first-order autocorrelation
AR1) process in situations where the spatial distribution of
ampling has changed substantially over time (Charsley et al.,
023 ; Grüss et al., 2023a ). Thus, in each linear predictor, spa-
ial and spatio-temporal variations are modelled as 

ω ∼ MV N 

(
0 , σ 2 

ω R ( κ ) 
)

ε ( t ) ∼
{

MV N 

(
0 , σ 2 

ε R ( κ ) 
)

if t = t min 

MV N 

(
ρε ε ( t − 1 ) , σ 2 

ε R ( κ ) 
)

if t > t min 
, (3) 

here ρε is the temporal autocorrelation coefficient at lag 1,
hich can be turned off if modelling spatio-temporal variation
s an AR1 process is not warranted; R (κ ) is a matrix repre-
enting the Matérn covariance structure, which describes the
orrelation between locations as a function of the decorrela-
ion distance κ (Lindgren et al., 2011 ); σ 2 

ω is the estimated
ointwise variance of spatial variation; σ 2 

ε is the estimated
ointwise variance of spatio-temporal variation; t min is the
rst year in the time series; and ρε , κ, σ 2 
ω , and σ 2 

ε are esti-
ated separately for the first and second linear predictors. The

patio-temporal variation term is crucial to capture changes
n spatial variation over time and obtain predictions at un-
bserved locations and times. The modelling of spatial and
patio-temporal variations is further detailed in the subsection
Estimation of covariance between locations”. 
When our model is fitted to data coming from an observer

rogram rather than from a survey, catchability differences
ecome very large between sampling events because of mul-
iple complex and poorly understood interactions between
shers, the fishing gear, various fishing vessel characteristics,
nd the management and other constraints that occurred at
he time of fishing (Hilborn and Walters, 1992 ; Quinn and
eriso, 1999 ). As a result, observer data tend to be overdis-
ersed to the extent where catchability covariates Q n and Q w 

ay not be sufficient to filter out the variation in the data
ue to the behavioural and technical characteristics of fishing
nd, therefore, to obtain indices whose variability is not sub-
tantially confounded with variability in catchability. Conse-
uently, when our model is fitted to observer data, each linear
redictor also includes a random vessel effect η( v i ) following a
ormal distribution with a mean of zero and a standard devi-
tion that is estimated (Thorson et al., 2015a ; Xu et al., 2019 ;
ufener et al., 2021 ). Note that there are case studies where
essel effects will not be normally distributed, e.g. if there are
roups of vessels with similar catchability or significant trends
n the catchability of vessels joining and leaving the fishery.
his issue does not pertain to our NZ case study (detailed be-

ow), but future applications of our modelling framework that
re concerned with this issue may want to add structure to the
andom vessel effect or define the vessel effect as a fixed factor
ffect (provided that the number of levels of the vessel factor
s not too large to allow for model estimation). 

When our model is fitted to data coming from several
ources (different surveys and/or observer programmes), addi-
ional catchability differences arise between observations due
o their source. To acknowledge the additional catchability
ifferences between observations, the first linear predictor of
he model then includes an additional catchability covariate
 , which allows for the estimation of the fishing-power ratio

or each monitoring programme relative to a reference survey
Grüss and Thorson, 2019 ): 

log ( n ( s i , t i ) ) = βn ( t i ) + ω n ( s i ) + ε n ( s i , t i ) + η ( v i ) 

+ 

n m ∑ 

m = 1 

δ ( m ) M ( i, m ) 

+ 

n p1 ∑ 

p1 = 1 

γn ( t i , p1 ) X n ( i, t i , p1 ) 

+ 

n k 1 ∑ 

k 1 = 1 

λn 
(
k 1 

)
Q n 

(
i, k 1 

)
, 

log ( w ( s i , t i ) ) = βw 

( t i ) + ω w 

( s i ) + ε w 

( s i , t i ) + η ( v i ) 

+ 

n p2 ∑ 

p2 = 1 

γw 

( t i , p2 ) X w 

( i, t i , p2 ) 

+ 

n k 2 ∑ 

k 2 = 1 

λw 

(
k 2 

)
Q w 

(
i, k 2 

)
, (4)
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where the random vessel effect η( v i ) is fixed at 0 when sample i 
comes from a survey; m indexes monitoring programmes; n m 

is the number of monitoring programmes considered in the 

model; and 

n m ∑ 

m = 1 
δ( m ) M ( i, m ) is the effect of monitoring pro- 

gram on expected number density; the design matrix M ( i, m ) 
is 1 for the monitoring program that collected sample i and 0 

otherwise; and the monitoring program effect δ(m ) is set up 

so that δ(m ) = 0 for the reference data source, which is the 
survey with the largest sample size. The constraint imposed 

on δ(m ) enables the identifiability of all βn parameters (Grüss 
et al., 2018 ). It also results in the estimation of a fishing-power 
ratio for each monitoring program relative to a reference sur- 
vey, which gives more weight to the structured reference data 
source compared to the other data sources (that include the 
unstructured data). We elected to treat the monitoring pro- 
gram catchability factor as a fixed rather than a random ef- 
fect so that we are not making any implicit assumption that 
included monitoring programmes are similar to one another 
(Grüss and Thorson, 2019 ). This contrasts with our treatment 
of fishing vessels as having fishing power as a random effect,
where we assume that fishing vessels do on average have sim- 
ilar fishing power. 

Our model is implemented with the Vector Autoregres- 
sive Spatio-Temporal (VAST) modelling platform, using the 
R package VAST release 3.10.0 (Thorson, 2019 ). VAST is a 
generalized linear mixed-effects modelling platform that in- 
corporates the functionality of vector autoregression (Hamil- 
ton, 1994 ). Any mixed-effects modelling platform requires in- 
tegration across all random effects during model fitting, or an 

approximation of the integral. This integration computes the 
likelihood of the parameters treated as fixed effects while inte- 
grating across all the possible values for the random effect, and 

simultaneously weighting each possible value given the proba- 
bility of that value for the random effect (Equation 1 of Thor- 
son et al., 2015b ). This integration is made computationally 
reasonable in VAST via the use of the Laplace approximation 

as implemented in Template Model Builder (TMB; Kristensen 

et al., 2016 ). Specifically, TMB applies the Laplace approxima- 
tion to the joint likelihood of fixed and random effects jointly 
with the model Hessian to compute marginal likelihood and,
therefore, estimate the variance of random effects. VAST R 

codes and associated materials are available on a dedicated 

GitHub repository ( https://github.com/James- Thorson- NOA 

A/VAST ), along with a user manual (Thorson, 2022 ), other 
documentation, and examples. VAST also has a dynamic com- 
munity of developers and users, as shown by its multiple ap- 
plications worldwide and its use in > 110 peer-reviewed pub- 
lications as of July 2023. Further details about the estimation 

of our model, as well as details about its evaluation, which 

employs procedures that are standard for VAST models, can 

be found in Appendix 1. 

Estimation of covariance between locations 

With the VAST modelling platform, all the spatial and spatio- 
temporal variation terms are modelled as Gaussian Markov 
random fields ϕ following the multivariate distribution (Thor- 
son et al., 2015a ): 

ϕ ∼ MV N ( μ, �) , (5) 

where μ is the expected value of the multivariate normal dis- 
tribution for each location, which is typically set to zero un- 
less an AR1 process is assumed Equation ( 3 ); and � is a co- 
ariance matrix for random field ϕ at each location. Classi-
ally, in VAST (1) covariances between locations � are as- 
umed to be stationary and are estimated using the modi-
ed Matérn autocorrelation function developed in Thorson 

t al. (2015a) , which accounts for geometric anisotropy (their
quation 4); (2) a predictive approach is adopted for compu-
ational efficiency where a triangulated mesh is defined around 

 x “knots”, and covariance is estimated between those knots 
Shelton et al., 2014 ); and (3) bilinear interpolation is then
mployed to obtain values between knot positions (Grüss et 
l., 2020 ). This classical approach for estimating covariance 
etween locations in VAST is referred to as the “stochastic
artial differential equation (SPDE) model”. 
However, the SPDE model is not well suited for regions

haracterized by physical barriers (islands, convoluted coast- 
ines) such as NZ waters. Using the SPDE model for such
egions would lead to inappropriate smoothing over is- 
ands and/or convoluted coastlines. Thus, the “SPDE-Barrier 
odel” presented in Bakka et al. (2019) was introduced in 

he VAST modelling platform. The SPDE model determines 
ependency between two locations based on all the paths that
xist between them, including the paths that cross land. With
he SPDE-Barrier model, dependencies along the paths that 
ross land are weakened to almost zero, so that they do not
ontribute to the estimation of the covariance between loca- 
ions (Bakka et al., 2019 ). Compared to the SPDE model, in
he SPDE-Barrier model: (1) geometric anisotropy is ignored; 
nd (2) only a fraction of spatial range (the distance at which
wo observations can be considered to be effectively indepen- 
ent) is applied in the presence of a barrier (i.e. over land),
hich is what weakens the dependencies along the paths that

ross land to almost zero. In our implementation of the SPDE-
arrier model, spatial range over land was 0.2 of the in-water
patial range, following Bakka et al. (2019) . As a result, the
orrelation between locations decayed five times more slowly 
ith distance across water than with distance across land. 

emonstration 

e demonstrated our spatio-temporal modelling framework 

y applying it to two bycatch species in the NZ deepwater fish-
ries, spiny dogfish and javelinfish. The demonstration relied 

n bottom trawl survey data collected in NZ waters over the
eriod 1991–2021 and data collected by observers onboard 

ommercial bottom trawlers over the same time period. Spiny 
ogfish was chosen because there is an interest in NZ in better
nderstanding its biomass trends (Baird and Ballara, 2022 ).
avelinfish was chosen because it is one of the species con-
ributing the most to bycatch in weight in NZ deepwater fish-
ries (Finucci et al., 2019 ). None of the models developed for
piny dogfish and javelinfish included density covariates X n or 
 w 

or catchability covariates Q n or Q w 

, and we leave the in-
lusion of these covariates in our spatio-temporal modelling 
ramework for future research (see the “Discussion” section).

The bottom trawl survey data were obtained from the Fish-
ries New Zealand (FNZ) database trawl (Mackay, 2020 ).
ne important detail about the trawl database is that it gath-

rs data collected in different geographic areas using various 
esigns and protocols, sometimes for very different purposes 
e.g. targeted identification trawls complementing acoustic 
easurements for a specific species or random trawls for mon-

toring multiple species). In addition, not all the records in-
luded in the trawl database are valid for biomass estima-

https://github.com/James-Thorson-NOAA/VAST
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Table 1. NZ bottom trawl research surv e y s considered in this study. 

Survey short name Survey long name 

WCNI SNA West Coast North Island inshore trawl survey 
HAGU SNA Northern inshore trawl survey series in the Hauraki Gulf 
BPLE SNA Northern inshore trawl survey series in the Bay of Plenty 
ECNI Northern inshore trawl survey series off the East Coast North Island 
WCSI TBGB Inshore trawl survey of the West Coast South Island and Tasman/Golden Bays 
WGSI MD West Coast South Island Tangaroa middle depth survey 
SOUTH MD Southland middle depth survey 
SUBA AUT Sub-Antarctic autumn middle depth trawl survey 
SUBA SUM Sub-Antarctic summer middle depth trawl survey 
ECSI SUM Summer inshore trawl survey of the East Coast South Island 
ECSI WIN Winter inshore trawl survey of the East Coast South Island 
CHAT MD Chatham Rise middle depth trawl survey 

Figure 1. (a) Map of the NZ e x clusiv e economic zone (delineated by a black line). Depth contours are labelled in 500- and 2000-m grey contours. 
Important features are also labelled and include NZ’s North Island (NI), NZ’s South Island (SI), the West Norfolk Ridge, the Hikurangi Trough, the Chatham 

Rise, and the Sub-Antarctic area. (b) Spatial distribution of the NZ surv e y data used in this study, which come from 12 different surv e y s ( Table 1 ). 
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ion (e.g. due to poor gear performance). For these reasons,
e enhanced the trawl database with additional tables that

1) identify the records that are valid for biomass estimation
nd can, therefore, be retained in our analyses; and (2) clas-
ify the valid records into individual surveys that were car-
ied out in similar geographic areas, using similar designs and
rotocols, and that generally shared the same core stratifica-
ion for the survey design, with consistent vessel and trawl
ear throughout. Thus, we worked with a total of 12 NZ sur-
ey series in this study ( Table 1 and Figure 1 ). The data col-
ected in the 12 survey series were cleaned using procedures
hat are standard in NZ (Appendix 2). Over all 12 research
urvey series, our cleaned survey datasets for spiny dogfish
nd javelinfish included records for 10208 and 10833 hauls,
espectively ( Supplementary Figure S3 ). For both species, the
hatham Rise middle depth (CHAT MD) trawl survey was
he survey with the largest sample size. 

The observer data collected onboard commercial trawlers
ere extracted from the FNZ database cod (Sanders and
isher, 2020 ). The cod database gathers the catch and ef-
ort (confidential) information for observed commercial fish-
ng vessels that has been collected within the FNZ observer
rogramme since 1986, as well as the age, length, and biolog-
cal information collated by observers. Similar to the survey
ata, we cleaned the data collected onboard bottom trawlers
ver the period 1991–2021 employing procedures that are
tandard in NZ (Appendix 2). Our cleaned observer datasets
or spiny dogfish and javelinfish included records for 127957
nd 126768 hauls, respectively ( Supplementary Figure S3 ). In
ddition to being much more numerous than the survey data,

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad129#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad129#supplementary-data
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Table 2. Areas of the NZ e x clusiv e economic zone for which indices of relative biomass were produced in this study. 

Area of the NZ exclusive economic zone for 
which indices of relative biomass were produced 

Species for which indices were 
produced Research survey encompassing the area 

West Coast North Island (WCNI) Spiny dogfish ( S. acanthias ) West Coast North Island inshore trawl survey 
West Coast South Island and Tasman/Golden 

Bays (WCSI TBGB) 
Spiny dogfish Inshore trawl survey of the West Coast South Island and 

Tasman/Golden Bays 
West Coast South Island middle depth area 

(WCSI MD) 
Spiny dogfish West Coast South Island Tangaroa middle depth survey 

Sub-Antarctic middle depth area (SUBA) Spiny dogfish, javelinfish ( L . 
denticulatus ) 

Sub-Antarctic summer middle depth trawl survey 

East Coast South Island (ECSI) Spiny dogfish Winter inshore trawl survey of the East Coast South 
Island 

Chatham Rise middle depth area (CHAT MD) Spiny dogfish, javelinfish Chatham Rise middle depth trawl survey 
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the observer data also covered a much larger fraction of the 
NZ exclusive economic zone (EEZ), e.g. deeper waters ( > 500- 
m depth) of the northern part of the EEZ. 

Before fitting VAST models, we constructed prediction grids 
for the study species using the methodology of Grüss et al.
(2018) . First, we generated a 10 × 10 km spatial grid for the 
NZ EEZ. Second, using all the encounter data for spiny dog- 
fish and javelinfish from the original trawl and cod databases 
(collected with a bottom trawl or other gears), we determined 

the longitudinal, latitudinal, and depth ranges of each species.
The depth data employed in this step came from Mitchell et 
al. (2012) . Third, based on the calculated longitudinal, latitu- 
dinal, and depth ranges of the study species, we subsetted the 
10 × 10 km spatial grid for the NZ EEZ to obtain a 10 ×
10 km prediction grid for spiny dogfish and another one for 
javelinfish. The prediction grids were used to define the spatial 
distribution of knots in VAST and produce density maps from 

the outputs of the models, and they were further subsetted to 

obtain indices for specific areas of the NZ EEZ (see below). 
For both spiny dogfish and javelinfish, we developed three 

different VAST models and compared the predictions of the 
three models. The three different models were fitted to (1) 
the data collected by the 12 survey series (survey-only data); 
(2) observer-only data; or (3) both survey and observer data 
(integrated data). The data were biomass catch rate data in 

kg km 

−2 in all cases. In all models, spatio-temporal varia- 
tion was modelled as an AR1 process [Equation ( 3 )], because 
the spatial distribution of sampling has changed substantially 
over time for both the surveys and the observer program. In 

the models fitted to survey-only and integrated data, the mon- 
itoring program catchability factor included, respectively, 12 

levels (for the 12 survey series) and 13 levels (for the 12 survey 
series plus the observer program) (Equation 4 ). The monitor- 
ing program effect δ(m ) was set to zero for the CHAT MD 

survey in both models. In all models (as well as for the simu- 
lation experiment described below), n x = 200 knots were dis- 
tributed uniformly over the prediction grid of the species of in- 
terest ( Supplementary Figure S4 ), and biomass densities were 
predicted across 2000 grid cells covering that prediction grid 

(Grüss et al., 2020 ). We first mapped the spatial patterns of log 
density of the two study species and their associated standard 

errors (SEs). To obtain SEs, we (1) drew 1000 samples from 

the predictive distributions by sampling from the joint distri- 
bution of fixed and random effects (Goodman et al., 2022 ); 
and (2) computed SEs for log-density estimates from the 1000 

samples. In addition to generating log-density maps for the 
two study species, we processed the outputs of the VAST mod- 
els to produce annual indices for specific areas of the NZ EEZ.
hese specific geographic areas correspond to the spatial foot- 
rint of some of the individual surveys ( Table 2 ). These areas
ere chosen because they are relevant to the management of

piny dogfish and javelinfish. The SEs and, therefore, the 95%
onfidence intervals around all VAST indices for specific areas
f the NZ EEZ were calculated using the generalized delta
ethod implemented in TMB (Kass and Steffey, 1989 ). The
AST indices for the specific areas of the NZ EEZ were com-
ared to the indices computed directly from survey-only data 
ith the SurvCalc software (Francis, 2009 ). 

imulation experiment 

n addition to the demonstration, we carried out a simulation
xperiment using the integrated spatio-temporal model for 
piny dogfish fitted above (which employs the SPDE-Barrier 
odel) as the operating model (OM), in order to further eval-
ate the performance of our modelling framework. Javelinfish 

as not considered in the simulation experiment primarily be- 
ause the spatio-temporal model using survey-only data did 

ot converge for this species (see the “Results” section). The 
imulation experiment consisted of (1) employing a simulator 
hat generates new values of random effects conditional on 

he maximum likelihood estimates (MLEs) for fixed effects 
stimated by the OM and then produces simulated data con-
itional upon fixed and random effect values; (2) considering 
hat the indices derived from simulated data represent “true 
ndices”; (3) fitting alternative estimation models (EMs) to the 
imulated data, resulting in alternative estimated indices; and 

4) comparing the estimated indices (obtained from the EMs)
o the true indices (obtained from the simulated data) using
erformance metrics to evaluate the bias, error, and confidence 
nterval coverage of the indices estimated by the alternative 
Ms. The alternative EMs were fitted to integrated simulated 

ata vs. simulated survey-only data and considered physical 
arriers (i.e. used the SPDE-Barrier model) or not (i.e. used
he SPDE model). 

The simulation experiment was conducted with the “self- 
est simulator” included in the R package VAST (Thorson,
019 ), which has already been employed in previous stud-
es in a similar manner as in the present study to compare
he performance of VAST models under alternative scenar- 
os (e.g. Grüss and Thorson, 2019 ; Charsley et al., 2023 ).
n the present study, four scenarios were considered (inte- 
rated data + SPDE-Barrier model; survey-only data + SPDE- 
arrier model; integrated data + SPDE model; and survey- 
nly data + SPDE model), and 100 simulations were con-
ucted with the self-test simulator for each of these four sce-

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad129#supplementary-data
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Table 3. In-water spatial range (the distance at which two observations can be considered to be effectively independent, in km) estimated by the first and 
second linear predictors of the VAST models fitted in this study. 

Species VAST model 
In-water spatial range estimated by 

the first linear predictor (km) 
In-water spatial range estimated by 

the second linear predictor (km) 

Spiny dogfish ( S . acanthias ) Fitted to survey-only data 222 218 
Fitted to observer data 176 135 

Fitted to integrated data 185 151 
Javelinfish ( L . denticulatus ) Fitted to observer data 156 120 

Fitted to integrated data 159 132 
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arios. The estimated indices (obtained from the EMs) were
or the NZ areas listed in Table 2 and were compared to the
rue indices (obtained from the OM) for the same areas. Note
hat the EM under the first scenario (integrated data + SPDE-
arrier model) is the OM but re-estimated using the simu-

ated data generated by the self-test simulator, with the goal to
urther understand the performance of our integrated spatio-
emporal model employing the SPDE-Barrier model. 

The following performance matrices (detailed in Appendix
) were calculated to compare the performance of the four al-
ernative EMs: (1) a bias metric indicating whether changes in
he true index are accurately estimated (the closer to 1, the bet-
er; Thorson et al., 2015a ); (2) root mean squared error (the
ower, the better; Stow et al., 2009 ); and (3) coverage for a
0% confidence interval (henceforth usually “coverage”; the
loser to 50%, the better; Bolker, 2008 ). Coverage is the per-
entage of years that the 50% confidence interval of an esti-
ated index contains the “true” index. If coverage values are

reater (smaller) than 50%, confidence intervals are too wide
too narrow; Bolker, 2008 ). 

esults 

or spiny dogfish, the three models (fitted to survey-only,
bserver-only, or integrated data) converged, most likely be-
ause there was no strong spatial imbalance in both the sur-
ey and the observer encounter data for the species ( Supp
ementary Figure S3 ). The in-water spatial ranges estimated
y the model fitted to integrated data were more similar to
he in-water spatial ranges estimated by the model fitted to
bserver-only data than to those estimated by the model fitted
o survey-only data ( Table 3 ), likely because there were 12.5
imes more observer records than survey records for spiny
ogfish. 
Compared to the other models, the model fitted to survey-

nly data provided incomplete insights into the spatial density
atterns of spiny dogfish in the NZ EEZ ( Figures 2 and 3 ).
pecifically, the model fitted to survey-only data predicted
hat spiny dogfish high-density areas were located only on the
HAT and on the west and east coasts of the SI. By contrast,

he models fitted to observer-only or integrated data predicted
hat spiny dogfish high-density areas are also found in the Sub-
ntarctic area, the southern part of the west coast of the NI,
nd the West Norfolk Ridge ( Figures 2 and 3 ). 

Indices were generated for six specific NZ areas that are
elevant to the management of spiny dogfish ( Figure 4 and
upplementary Figure S6 ). For all NZ areas, the indices pro-
uced with the three models displayed the same signal. For
ll NZ areas, the indices resulting from survey-only data were
ore uncertain and, as expected, agreed more with the tradi-

ional stratified random (SurvCalc) indices, while the indices
esulting from observer-only data tended to show larger inter-
nnual variability . Finally , for all NZ areas, integrating survey
nd observer data resulted in indices that (1) were less uncer-
ain than when survey-only data were employed; and (2) dis-
layed less interannual variability and agreed more with Surv-
alc indices than when observer-only data were used ( Figure
 and Supplementary Figure S6 ). The index predicted for the
HAT MD area with observer-only data showed some very

arge interannual variability at the end of the time series that
as highly uncertain and dubious. Integrating survey and ob-

erver data corrected a lot for this issue, yet the value predicted
or 2019 remained potentially questionable ( Figure 4 ). 

For javelinfish, only the models fitted to observer-only or in-
egrated data converged. The model fitted to survey data did
ot converge most likely because the survey encounter data for
avelinfish were very spatially imbalanced; importantly, survey
eries did not provide any encounter data for javelinfish for a
arge fraction of the NZ EEZ located north and northwest
f New Zealand’s NI ( Supplementary Figure S3 ). For both
he first and the second linear predictors, the in-water spatial
anges estimated for javelinfish were smaller than those esti-
ated for spiny dogfish ( Table 3 ). Moreover, for javelinfish,

he in-water spatial ranges estimated by the models fitted to
bserver-only and integrated data were similar ( Table 3 ). 
Both the models fitted to observer-only or integrated data

redicted that javelinfish high-density areas are found in the
ub-Antarctic area, the Chatham Rise, and the Hikurangi
rough area ( Figure 5 ). For javelinfish, indices were generated
or two specific NZ areas that are relevant to the manage-
ent of the species ( Figure 6 and Supplementary Figure S7 ).
or both NZ areas, the indices derived from integrated data
isplayed less interannual variability, were less uncertain, and
ended to be in better agreement with the SurvCalc indices
 Figure 6 and Supplementary Figure S7 ). 

The simulation experiment conditioned on the MLEs for
piny dogfish confirmed that integrating survey and observer
ata resulted in more complete insights into fish spatial den-
ity patterns ( Supplementary Figure S8 ) and more precise in-
ices ( Figure 7 and Supplementary Figure S9 ). The simula-
ion experiment also revealed that bias and error in indices
ere reduced when using integrated data rather than survey-
nly data ( Figure 8 and Supplementary Figure S10 ). More-
ver, the indices resulting from integrated data had a smaller
overage than the indices resulting from survey-only data.
pecifically (1) the uncertainty around the indices was under-
stimated when integrated data were employed, but overesti-
ated when survey-only data were used; or (2) the uncertainty

round the indices was underestimated both when integrated
r survey-only data were employed, but uncertainty was bet-
er characterized when survey-only data were used ( Figure 8
nd Supplementary Figure S10 ). Finally, the simulation exper-

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad129#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad129#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad129#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad129#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad129#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad129#supplementary-data
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Figure 2. Mean spatial patterns of log-density o v er the period 1991–2021 (log-kg km 

−2 ; top panels) and their associated SEs (bottom panels), predicted 
by the VAST models for spiny dogfish ( S . acanthias ) fitted to survey-only data (left panels); observer-only data (middle panels); or both survey and 
observer data (right panels). 
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iment revealed virtually no differences when physical barri- 
ers were accounted for or not in models ( Figures 7 –8 and 

Supplementary Figures S7 –S10 ). 

Discussion 

Here, we presented and demonstrated an integrated spatio- 
temporal modelling framework that accounts for physical bar- 
riers in the estimation of spatial and spatio-temporal vari- 
ation. The spiny dogfish and javelinfish applications high- 
lighted the utility of our integrated modelling framework in 

providing density maps for a broad region (the NZ EEZ in 

this study) and reliable indices for specific geographic areas 
(specific NZ areas in this study). The javelinfish application 

also highlighted one large benefit of integrated SDMs, which 

is to allow for model convergence when SDMs fitted to one 
single data source fail. However, our applications and simula- 
tion experiment also confirmed that, while integrated SDMs 
constitute valuable tools by leveraging the strengths of differ- 
ent data sources, they are not necessarily preferable to SDMs 
tted to one single data source in all situations (Isaac et al.,
020 ; Simmonds et al., 2020 ). 
The spiny dogfish application corroborated previous stud- 

es (Grüss and Thorson, 2019 ; Rufener et al., 2021 ) in that the
enefits of integrated models in terms of better spatial den-
ity predictions are more straightforward than their ability 
o produce better indices. Using integrated data rather than 

urvey-only data allowed for comprehensive insights into the 
patial density patterns of spiny dogfish in the NZ EEZ, which
oncur with those reported in the literature (Hanchet, 1986 ;
agley et al., 2000 ) and knowledge of experts of the species

O. Anderson and R. O’Driscoll, pers. comm.). Regarding in- 
ices, those obtained with integrated data were less uncertain 

han those with survey-only data and showed less interannual 
ariability than those with observer-only data. In addition,
y sharing information across data sources, sites, and years,
ur integrated spatio-temporal model can provide indices for 
Z areas for which survey data or SurvCalc indices are not

vailable (e.g. areas off the northeast coast of the NI in the
ase of spiny dogfish). However, our results for spiny dog-
sh indicated that, for the Chatham Rise middle depth area,

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad129#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad129#supplementary-data
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Figure 3. Spatial patterns of log-density (log-kg km 

−2 ) in select years (1991, 2006, and 2021) predicted by the VAST models for spiny dogfish ( S . 
acanthias ) fitted to surv e y -only data (left panels); observer-only data (middle panels); or both surv e y and observer data (right panels). 
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ne may have more confidence in the index generated with
urvey-only data than in the index generated with integrated
ata. The CHAT MD survey provides a very consistent time
eries, such that integrating the CHAT MD survey data with
bserver data is not warranted and results in an index in which
he large interannual variability at the end of the time series
ay be questionable. Previous studies (Fletcher et al., 2019 ;
hompson et al., 2022 ) also reported the absence of bene-
ts of data integration when one single survey dataset already
rovides ample information. We conclude that, if enough sur-
ey data are available, scientists should (1) fit models to both
urvey-only and integrated data; and (2) for a given geo-
raphic area, ultimately choose the index produced with in-
egrated data or the index produced with survey-only data



Integrating survey and observer data improves New Zealand spatio-temporal models 2001 

Figure 4. Indices of relative biomass for the West Coast South Island middle depth area (WCSI MD), the East Coast South Island (ECSI), and the 
Chatham Rise middle depth area, predicted by the VAST models for spiny dogfish ( S . acanthias ) fitted to survey-only data (left panels); observer-only data 
(middle panels); and both surv e y and observer data (right panels). Also shown are the traditional stratified random (SurvCalc) indices of relative biomass 
obtained from surv e y data (f or y ears in which surv e y s w ere carried out). In all panels, the shaded areas represent 95% confidence intervals around VAST 
predictions, while vertical bars represent 95% confidence intervals around SurvCalc indices of relative biomass. 
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based on the reliability of the interannual variability of the 
index. 

The simulation experiment confirmed that integrating sur- 
vey and observer data resulted in more accurate spatial den- 
sity predictions and more precise indices. The simulation ex- 
periment also indicated that integrating survey and observer 
data led to a reduction in bias and error in indices, consis- 
tent with the simulation experiment carried out in Grüss and 

Thorson (2019) . On the other hand, the simulation experi- 
ment conducted in this study yielded a result that was un- 
expected a priori , which was that integrating survey and ob- 
server data did not improve confidence interval coverage, i.e.
did not improve the characterization of uncertainty around 

the estimated indices. More specifically, the simulation ex- 
periment revealed that our integrated model was less con- 
servative than the model using survey-only data in terms of 
uncertainty characterization and greatly underestimated un- 
certainty around the estimated indices. The consequence of 
this result is that, for a given geographic area, the ultimate 
choice between an index generated with integrated data and 

an index generated with survey data should be based more 
on the plausibility of the interannual variability of the in- 
dex than on the uncertainty around that index. We recom- 
mend that future studies seeking to obtain indices explore 
ways to downweight the influence of the observer data in 

the integrated model, e.g. by defining survey data as refer- 
ence data while estimating the spatially varying catchability 
f the observer program (Thorson et al., 2023 ; Grüss et al.,
023b ). 
Another unexpected result of the simulation experiment 

as that accounting for physical barriers in the estimation of
patial and spatio-temporal variation had virtually no impact 
n the accuracy, error, and confidence interval coverage of the
ndices estimated with our NZ spatio-temporal model. This 
esult is not specific to the SPDE-Barrier model but rather to
ur NZ EEZ application, and is due to the large extent of
ur study region ( Supplementary Figure S4 ) combined with
he absence of geophysical considerations in our implemen- 
ation of the SPDE-Barrier model. This result echoes some of
he findings of the generalized additive mixed modelling study 
f Augustin et al. (2013) , which employed a similar barrier
odel, namely the soap film smooths from Wood et al. (2008) .
hile Augustin et al. (2013) reported a decrease in root mean

quared prediction error (RMSPE) with the use of the soap
lm smooths instead of standard thin plate regression splines,
hat decrease in RMSPE was small. To gain more insights into
he performance of the SPDE-Barrier model in VAST, we rec-
mmend that future studies evaluate the consequences of em- 
loying the SPDE-Barrier model vs. the classical SPDE model 
n VAST for regions where physical barriers (islands and/or 
onvoluted coastlines) represent a much larger fraction of the 
ystem (e.g. the Baltic Sea, the inshore domain of the US Gulf
f Mexico). Moreover, future research should attempt to inte- 
rate geophysical considerations into the SPDE-Barrier model.

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad129#supplementary-data
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Figure 5. Mean spatial patterns of log-density o v er the period 1991–2021 (log-kg km 

−2 ) and their associated standard errors (SEs), predicted by the VAST 
models for javelinfish ( L . denticulatus ) fitted to observer-only data (left panels); or both survey and observer data (right panels). Note that the VAST model 
fitted to surv e y -only data did not con v erge, most likely because the surv e y data for javelinfish were very spatially imbalanced. 
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or example, for island regions such as the Hawaiian Islands
rchipelago, future studies could develop an SPDE-Barrier
odel that has differential decorrelation strength for land-
ased barriers and deep channels between islands. In this im-
lementation, the channel barrier decorrelation strength could
e a function of maximum channel depth or average current
peed through the channel (N. Ducharme-Barth, pers. comm.).

The demonstration in this study was for two bycatch
pecies in NZ deepwater species and did not require the in-
lusion of density covariates X n or X w 

or catchability covari-
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Figure 6. Indices of relative biomass for the Sub-Antarctic middle depth area (SUBA) predicted by the VAST models for javelinfish ( L . denticulatus ) fitted 
to observer-only data (left panel); and both surv e y and observer data (right panel). Also shown are the traditional stratified random (SurvCalc) indices of 
relative biomass obtained from survey data (for years in which surveys were carried out). In all panels, the shaded areas represent 95% confidence 
intervals around VAST predictions, while vertical bars represent 95% confidence intervals around SurvCalc indices of relative biomass. Note that the 
VAST model fitted to survey-only data did not converge, most likely because the survey data for javelinfish were very spatially imbalanced. 

Figure 7. Indices of relative biomass for the West Coast North Island (WCNI) estimated in three replicates (columns) of the simulation experiment. The 
indices of relative biomass shown in top panels were estimated with VAST models fitted to both survey and observer data, while the indices of relative 
biomass shown in bottom panels were estimated with VAST models fitted to surv e y data only. In all panels, the shaded areas represent 95% confidence 
intervals. 
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ates Q n or Q w 

(i.e. catchability covariates beyond the catch- 
ability factor representing fishing-power ratios among mon- 
itoring programmes) in spatio-temporal models. The spatial 
and spatio-temporal variation terms in spatio-temporal mod- 
els account, respectively, for latent static and latent dynamic 
variables that influence fish densities (Shelton et al., 2014 ; 
Thorson et al., 2015a ; Ono et al., 2018 ). Future studies could 

test the inclusion of alternative static environmental covariates 
(e.g. bottom depth, bottom type) and/or dynamic environmen- 
tal covariates (e.g. sea temperature) in our integrated model,
and determine whether this inclusion improves or degrades 
the spatial predictions of the integrated model (Pacifici et al.,
2017 ; Simmonds et al., 2020 ; O’Leary et al., 2022 ). Explor- 
ing the inclusion of dynamic environmental covariates in our 
model would be particularly useful given increased calls for 
investigations of climate change impacts on fish and fisheries,
including in NZ (Pinkerton, 2017 ). Evaluating the impacts of 
including bottom depth in our model would also be a good 

idea, because this variable has been found to explain a fair 
percentage of the deviance in the data in many SDM studies 
s it encompasses many diverse environmental features (Elith 

nd Leathwick, 2009 ; Grüss et al., 2016 ). 
Moreover, the models that we fitted to observer-only or in-

egrated data in this study included a random vessel effect that
ubstituted any explicit catchability covariates. Such a model 
tructure is appropriate to account for catchability differences 
etween vessels, particularly so when the fish stocks of interest
re bycatch species rather than species targeted by fishing ves-
els (Pennino et al., 2016 ; Xu et al., 2019 ; Rufener et al., 2021 ).
hat being said, it remains preferable to include explicit catch-
bility covariates in addition to a random vessel effect in mod-
ls that rely on fisheries-dependent data, as a vessel effect most
ikely encompasses a lot but not all the factors affecting the
atchability of the stock of interest (Grüss et al., 2023c ). Re-
ently, two modelling studies (Rufener et al., 2021 ; Alglave
t al., 2022 ) integrated survey with fisheries-dependent data 
or species targeted by fishing (observer data in Rufener et al .
021 and commercial data in Alglave et al. 2022) . In addi-
ion to including a monitoring program catchability effect or 
 random vessel effect, the two integrated modelling studies 
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Figure 8. Bias (the closer to , the better), root mean squared error (the lo w er, the better), and co v erage (in %; the closer to 50%, the better) of the 
indices of relative biomass estimated with VAST models for the West Coast North Island (WCNI; top panels) and the the Chatham Rise middle depth 
area (CHAT MD; bottom panels) within the simulation experiment. The VAST models in Scenarios 1 and 2 used an SPDE-Barrier model to estimate the 
spatial dependency between data points, while the VAST models in Scenarios 3 and 4 used an SPDE model. Moreover, the VAST models were fitted to 
both surv e y and observ er data in Scenarios 1 and 3 (blue bo xplots), while the y w ere fitted to surv e y data only in Scenarios 2 and 4 (red bo xplots). 
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lso accounted for preferential sampling (the likely correla-
ion between sampling locations and fish abundance) for the
sheries-dependent data, which was modelled as an inhomo-
eneous Poisson point process. However, Rufener et al. (2021)
ound that, when the fisheries-dependent data that are inte-
rated with survey data are observer data, accounting for pref-
rential sampling does not improve the integrated model and
oes not alter parameter estimates. We recommend further re-
earch regarding when to account for preferential sampling in
ither targeted or bycatch species. 

We also envision several other avenues for future research.
irst, individual research surveys are typically restricted to
 few months of the years (Pennino et al., 2016 ; Bourdaud
t al., 2017 ; Webster et al., 2020 ), which is the case in NZ.
n this context, expanding our integrated modelling frame-
ork into a seasonal integrated spatio-temporal modelling

ramework (Thorson et al., 2020 ) would allow for the bor-
owing of information across data sources, sites, and years
ut also across seasons, thereby likely further improving the
erformance of the integrated model. Second, we used only
ne data type in the present study (biomass-sampling data),
hile other data types, including counts and encounters/non-

ncounters, are provided by monitoring programmes (e.g.
ount data are collected by observers placed onboard com-
ercial longliners in NZ). In addition, while the plentiful
resence-only observations that are collected opportunisti-
ally (e.g. through a tagging study or by citizen scientists) are
ery often tapped into in terrestrial integrated modelling stud-
es, they remain underused in fisheries science. Therefore, we
ncourage future studies to leverage more datasets by modi-
ying our integrated modelling framework so that it can ac-
ommodate multiple data types (biomass sampling, counts,
ncounters/non-encounters, but also presence-only data), sim-
lar to what was achieved in Grüss and Thorson (2019) .
hird, the survey and observer data that were employed in

his study were for the same time period (1991–2021), yet
sheries-dependent monitoring programmes usually provide a

onger time series than individual research surveys (Lunn and
earden, 2006 ; Pennino et al., 2016 ). Therefore, future ap-
lications of our integrated modelling framework will likely
ely on more years of data in the fisheries-dependent dataset
han in the survey dataset, thereby demonstrating the abil-
ty of integrated models to also provide stock assessments
ith one single index rather than multiple indices for differ-

nt time periods (e.g. several indices derived from different
esearch surveys and an index derived from the catch rate
ata reported by fishing vessels). We encourage future stud-
es to evaluate the impacts of using one single index pro-
uced from integrated data vs. multiple indices derived from
ndividual survey and/or fisheries-dependent datasets in the
tock assessment models of the species of interest (Peterson
t al., 2021 ). Fourth, future studies could investigate the con-
equences of varying the sample size of survey data relative
o that of observer data, similar to what was done in Al-
lave et al. (2022) . Finally, we recommend the development
f a metric summarizing the effective degrees of freedom cal-
ulated using the Laplace approximation via TMB or similar
ools. This would then allow scientists to compare the flexi-
ility of spatio-temporal smoothers between alternative model
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Our modelling framework employs the Poisson-link Delta–
Gamma distribution model to accommodate the large num- 
ber of zeros typically found in fish catch rate datasets, as has 
been generally done in VAST papers since Thorson (2018) .
The Poisson-link Delta–Gamma distribution model makes the 
assumption that encounter probabilities and expected positive 
catches are correlated in a way that is approximated by a Pois- 
son process (Thorson, 2018 ). This assumption is reasonable 
for species such as spiny dogfish and javelinfish, but may not 
be so for species whose individuals form tight aggregations 
(e.g. schools, shoals, clusters). For such species, the Tweedie 
distribution seems more appropriate (Peel et al., 2013 ). A re- 
cent study (Thorson et al., 2021 ) found that the Poisson-link 

Delta–Gamma distribution model and the Tweedie distribu- 
tion model resulted in a similar scale for VAST-based indices 
as design-based indices for 20 fish stocks of Alaska, which 

included species that form aggregations. That being said, we 
encourage future research considering multiple stocks world- 
wide to better understand whether and when it is reason- 
able to use the Poisson-link Delta–Gamma distribution model 
rather than the Tweedie model for species whose individuals 
form tight aggregations. 

In conclusion, this study confirmed the usefulness of in- 
tegrated spatio-temporal models, which can provide distri- 
bution/density maps for broad geographic areas to assist 
habitat management (e.g. marine spatial planning, essential 
fish habitat designation when working with data for specific 
fish life stages) and indices of relative biomass/abundance 
for fish stocks and substocks to inform fisheries manage- 
ment. A key result of this study is that, for a given fish 

stock or substock for which enough survey data are available,
fisheries scientists should (1) develop both integrated mod- 
els and models relying on survey-only data; and (2) choose 
the index produced with integrated data or the index pro- 
duced with survey-only data based on the reliability of the 
interannual variability of the index. Integrated SDMs are 
powerful tools and we hope to see their more widespread 

use in fisheries science to support resource management, as 
well as investigations of climate change impacts on fish and 

fisheries. 
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